Network formation of lipid membranes: triggering structural transitions by chain melting.

نویسندگان

  • M F Schneider
  • D Marsh
  • W Jahn
  • B Kloesgen
  • T Heimburg
چکیده

Phospholipids when dispersed in excess water generally form vesicular membrane structures. Cryo-transmission and freeze-fracture electron microscopy are combined here with calorimetry and viscometry to demonstrate the reversible conversion of phosphatidylglycerol aqueous vesicle suspensions to a three-dimensional structure that consists of extended bilayer networks. Thermodynamic analysis indicates that the structural transitions arise from two effects: (i) the enhanced membrane elasticity accompanying the lipid state fluctuations on chain melting and (ii) solvent-associated interactions (including electrostatics) that favor a change in membrane curvature. The material properties of the hydrogels and their reversible formation offer the possibility of future applications, for example in drug delivery, the design of structural switches, or for understanding vesicle fusion or fission processes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A model for the lipid pretransition: coupling of ripple formation with the chain-melting transition.

Below the thermotropic chain-melting transition, lipid membrane c(P) traces display a transition of low enthalpy called the lipid pretransition. It is linked to the formation of periodic membrane ripples. In the literature, these two transitions are usually regarded as independent events. Here, we present a model that is based on the assumption that both pretransition and main transition are ca...

متن کامل

Phase behavior of two-component lipid membranes: theory and experiments.

The structure of the ripple phase of phospholipid membranes remains poorly understood in spite of a large number of theoretical studies, with many experimentally established structural features of this phase unaccounted for. In this article we present a phenomenological theory of phase transitions in single- and two-component achiral lipid membranes in terms of two coupled order parameters: a s...

متن کامل

The temperature dependence of lipid membrane permeability, its quantized nature, and the influence of anesthetics.

We investigate the permeability of lipid membranes for fluorescence dyes and ions. We find that permeability reaches a maximum close to the chain melting transition of the membranes. Close to transitions, fluctuations in area and compressibility are high, leading to an increased likelihood of spontaneous lipid pore formation. Fluorescence correlation spectroscopy reveals the permeability for rh...

متن کامل

Mechanical aspects of membrane thermodynamics. Estimation of the mechanical properties of lipid membranes close to the chain melting transition from calorimetry.

Changes in the internal energy of lipids with temperature are related to both lipid volume and area changes. Close to the chain melting transition of lipid bilayers volume and enthalpy fluctuations generally follow proportional functions. This makes it possible to calculate the relationship between membrane excess heat capacity with lipid volume, area compressibility and the membrane bending mo...

متن کامل

Surface Recognition and Complexations Between Synthetic Poly(ribo)nucleotides and Neutral Phospholipids and Their Implications in Lipofection

Thermodynamic features related to preparation and use of self-assemblies formed between multilamellar and unilamellar zwitterionic liposomes and polynucleotides with various conformation and sizes are presented. The divalent metal cation or surfactant-induced adsorption, aggregation and adhesion between single- and double-stranded polyribonucleotides and phosphatidylcholine vesicles was followe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 25  شماره 

صفحات  -

تاریخ انتشار 1999